

Determination of the Active Form of the Tetranuclear Copper Sulfur Cluster in Nitrous Oxide Reductase

Esther M. Johnston,[†] Simone Dell'Acqua,^{‡,§} Susana Ramos,[‡] Sofia R. Pauleta,[‡] Isabel Moura,^{*,‡} and Edward I. Solomon^{*,†}

[†]Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States

[‡]REQUIMTE-CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Supporting Information

ABSTRACT: N₂OR has been found to have two structural forms of its tetranuclear copper active site, the 4CuS Cu_Z^* form and the 4Cu2S Cu_Z form. EPR, resonance Raman, and MCD spectroscopies have been used to determine the redox states of these sites under different reductant conditions, showing that the Cu_Z^* site accesses the 1-hole and fully reduced redox states, while the Cu_Z site accesses the 2-hole and 1-hole redox states. Single-turnover reactions of N₂OR for Cu_Z and Cu_Z^* poised in these redox states and steady-state turnover assays with different proportions of Cu_Z and Cu_Z^* show that only fully reduced Cu_Z^* is catalytically competent in rapid turnover with N₂O.

 \mathbf{N} itrous oxide reductase (N₂OR) is a copper-containing metalloenzyme that performs the last step of bacterial denitrification, the two-electron reduction of nitrous oxide to dinitrogen and water. This reaction completes the nitrogen cycle and prevents the release of nitrous oxide, a potent greenhouse gas and ozone-depleting agent, into the atmosphere.^{1,2} N₂O reduction is thermodynamically favorable, but a catalyst is required to overcome the 59 kcal/mol activation barrier for this reaction in the gas phase.³ Nitrous oxide reductase contains two multinuclear copper sites, a binuclear Cu_A electron-transfer site and a tetranuclear copper sulfide cluster, Cu_Z, the active site, at which N₂O binds and reduction occurs. Defining the tetranuclear copper site and its interaction with N₂O is key to understanding the catalytic properties of N₂OR.

Structural and spectroscopic characterization of N₂ORs before 2011 showed that the active site is a unique tetranuclear copper site with a μ_4 -bridging sulfide ligand and an accessible edge where a solvent-derived ligand is coordinated, proposed to be the site of N₂O binding (Cu₁-Cu_{IV} in Figure 1A).^{4,5} The electronic structure and reactivity of this cluster, known as Cu_Z*, have been extensively characterized. The resting redox state of Cu_Z* is the 3Cu¹1Cu^{II} (1-hole) state,⁶ and a slow reductive activation using the reductant reduced methyl viologen (MV, also used for steady-state turnover assays of N₂OR) is required to access the 4Cu^I (fully reduced) redox state of Cu_Z*, which is its active state in N₂O reduction.^{7,8} However, a recent X-ray crystal structure has revealed a different structural form of the active site in enzyme purified in

Figure 1. Crystal structures of (A) Cu_Z^* derived from aerobically prepared N₂OR and (B) Cu_Z derived from anaerobically prepared N₂OR. Copper shown in green, sulfur yellow, carbon gray, oxygen red, and nitrogen blue.

the absence of oxygen.⁹ This form, known as Cu_{7}^{10} contains a second sulfur ligand bound on the $\mathrm{Cu}_{\mathrm{IV}}\mathrm{-Cu}_{\mathrm{IV}}$ edge of the tetranuclear copper site (Figure 1B). Since this 4Cu2S Cu_z cluster is present in an anoxic isolation, it was proposed to be relevant for physiological N2O reduction. However, the direct reaction of the Cuz cluster with N2O has yet to be demonstrated and compared to that of Cuz*. In this study, using Marinobacter (Ma.) hydrocarbonoclasticus N_2OR , we report the redox states and single-turnover reactivity of Cu_z with N₂O to elucidate which redox state of the Cu₇ site reacts with N₂O and to compare this reactivity with the previously reported single-turnover reactivity of fully reduced Cu_z*.⁷ We determine that 1-hole Cu_Z (along with reduced Cu_A) reacts with N2O at a very slow rate, and only the fully reduced state of Cu_Z^* reacts with N₂O at a rapid rate required for catalytic turnover.

Determining the relative reactivity of Cu_Z and Cu_Z^* with N_2O is complicated by the fact that purified samples of N_2OR generally contain a mixture of Cu_Z and Cu_Z^* , and in some cases the cluster was not present at full occupancy.^{10,11} In the case of *Ma. hydrocarbonoclasticus* N_2OR , preparations of N_2OR containing exclusively Cu_Z^* at full occupancy have been obtained from broken cells that have been stored frozen,

Received: November 11, 2013 Published: December 23, 2013

followed by purification in the presence of oxygen (see SI).¹² N_2OR samples purified with this procedure have spectral features characteristic of 1-hole Cu_Z^* (an absorption band at 640 nm) and oxidized (i.e., $2Cu^{1.5}$) Cu_A . Enzyme preparations containing high amounts of Cu_Z have previously been obtained from the periplasmic extract of fresh cells followed by purification in the absence of oxygen¹³ or by rapid chromatographic purification in the presence of O_2 using only two chromatographic separation steps.¹⁴ The latter method was used to obtain the Cu_Z -containing samples of *Ma. hydrocarbonoclasticus* N_2OR used in this study (see SI). Under both sets of conditions, the isolated enzyme has full cluster occupancy and spectral features characteristic of Cu_Z in the $2Cu^{I1}2Cu^{I}$ (2-hole) redox state^{10,15} (an absorption band at 540 nm; 1-hole Cu_Z has an absorption band at 680 nm) and some oxidized Cu_A .

The amounts of Cu_Z and Cu_Z^* present in a sample could be determined by EPR spin quantitation after addition of a reductant chosen to select specific redox states of the Cu_{AJ} , Cu_Z and Cu_Z^* sites (Table 1).¹⁰ The specific redox states present

Table 1. Redox States of the Cu_{A} , Cu_{Z} , and Cu_{Z}^{*} Sites Present and the Reductant Used

	redox and spin state present		
reductant	Cu _A	Cu _Z	Cu _Z *
ascorbate	$2Cu^{I}, S = 0$	2-hole, $S = 0$	1-hole, $S = 1/2$
dithionite	$2Cu^{I}, S = 0$	1-hole, $S = 1/2$	1-hole, $S = 1/2$
methyl viologen	$2Cu^{I}, S = 0$	1-hole, $S = 1/2$	fully reduced, $S = 0$

with a given reductant in Table 1 were determined by resonance Raman spectroscopy. Excitation at 676 nm, a wavelength where 2-hole Cu_Z , 1-hole Cu_Z , and 1-hole Cu_Z^* all have absorption intensity, yields a resonance Raman spectrum for an ascorbate-reduced sample (Figure 2A, black)

Figure 2. Comparison of N_2OR containing 65% Cu_Z and 35% Cu_Z^* after reduction by ascorbate (black), sodium dithionite (red), and methyl viologen (blue). (A) Resonance Raman at 77 K obtained by laser excitation at 676 nm. (B) EPR at 77 K.

that shows the characteristic vibrations of 2-hole Cu_Z (350 and 407 cm⁻¹) and 1-hole Cu_Z^* (378 cm⁻¹).¹⁵ In this state Cu_A is reduced (2Cu^I) and 2-hole Cu_Z is diamagnetic, so spin quantitation of the EPR spectrum (Figure 2B, black) yields the amount of 1-hole Cu_Z^* . Subsequent reduction by sodium dithionite results in an increase in the EPR spin intensity (Figure 2B, red) as the 2-hole Cu_Z state is reduced to the 1-hole redox state. This is accompanied by the appearance of three characteristic vibrations for 1-hole Cu_Z in the resonance Raman spectrum (Figure 2A, red) at 203, 378, and 492 cm⁻¹ (the vibrations characteristic of 1-hole Cu_Z^* are still present but

overlap those of 1-hole Cu_Z). Spin quantitation of a dithionitereduced sample thus yields the total tetranuclear cluster concentration (the sum of 1-hole Cu_Z and 1-hole Cu_Z^*). Comparison of the ascorbate-reduced and dithionite-reduced spin intensities further yields the amount of Cu_Z . In this manner, comparison of the EPR spin intensities of a preparation of *Ma. hydrocarbonoclastes* N₂OR (purified by rapid chromatography in the presence of O₂) after ascorbate reduction and dithionite reduction (Figure 2B black and red spectra, respectively) shows that this purification yields enzyme containing 35% Cu_Z^* and 65% Cu_Z .

Further reduction of this sample by excess reduced MV, which is known to reduce Cu_Z^* to the fully reduced state,⁷ can be monitored by both EPR (Figure 2B, blue) and resonance Raman spectroscopies (Figure 2A, blue) to determine the redox state of Cu_Z present under steady-state assay conditions. After prolonged MV reduction (Figure S1), EPR spin quantitation shows that 65% of the copper sites remain oxidized (Figure 2B, blue). The resonance Raman spectrum continues to exhibit the characteristic vibrations of 1-hole Cu_Z (Figure 2A, blue). Thus, *the 4Cu2S Cu_Z site does not access the fully reduced redox state* and is present in the 1-hole redox state under steady-state assay conditions (excess reduced MV).

Since the redox states of Cu_{Z} and $\mathrm{Cu}_{\mathrm{Z}}^{*}$ under different reduction conditions are now defined (Table 1), reduction followed by a single-turnover reaction with N₂O can be used to determine the intrinsic reactivity of the accessible redox states of Cu_Z with N₂O. In these experiments N₂OR containing 65% Cu₇ was incubated with one of the three reductants (ascorbate, dithionite, or reduced MV) to select the redox states of the Cu_Z and Cu_{z}^{*} sites (Table 1). Subsequently the reductant was removed and the single-turnover reaction of the reduced enzyme with a stoichiometric amount of N₂O was monitored by UV/vis absorption spectroscopy. When ascorbate is used as the reductant to select the 2-hole redox state of Cu₇, no reaction with N₂O occurs (Figure S2), indicating that neither the 2-hole redox state of Cuz nor the 1-hole redox state of Cu_7^* can react with N₂O even in the presence of reduced Cu_A . In contrast, when dithionite reduction is used to select the 1hole redox state of Cu_Z (and reduce Cu_A), the N₂O reaction results in changes in the absorption spectrum that occur with a pseudo first order rate constant of 0.6 h^{-1} (Figure S3), indicating a slow reaction with N_2O (Figure 3A). In the course of the reaction, the absorption band at 14 700 \mbox{cm}^{-1} that is dominantly due to 1-hole Cu_Z (Figure 3A inset, blue) decays

Figure 3. (A) Absorption spectra showing the progress of the singleturnover reaction of N₂O with dithionite-reduced N₂OR containing 65% Cu_Z and 35% Cu_Z*. Inset: Absorption spectra of 2-hole Cu_Z (black), 1-hole Cu_Z (blue), and 1-hole Cu_Z* (red). (B) MCD spectra at 5 K and 7 T, showing the oxidation of Cu_A after 0.5 min (solid) and 3 h (dashed) of the reaction of N₂O with dithionite-reduced N₂OR containing 65% Cu_Z and 35% Cu_Z*.

and an absorption feature forms at 17 850 cm⁻¹, characteristic of 2-hole Cu_Z. The formation of 2-hole Cu_Z is also supported by the appearance of resonance Raman vibrations at 350 and 407 cm⁻¹ (see Figure S4).

The absorption of 2-hole Cu₇ overlaps with the region where absorption features of Cu_A would contribute at 18 500 and 20 800 cm^{-1} , so it is not clear from only the absorption spectrum whether Cu_A is also oxidized in this reaction. Magnetic circular dichroism (MCD) was used to determine this, since 2-hole Cu₇. is diamagnetic and MCD silent,¹⁰ while oxidized Cu_A has an intense MCD pseudo-A feature centered at 20,000 cm⁻¹. The MCD spectrum early (after 30 s, Figure 3B, solid) and late (after 3 h, Figure 3B, dashed) in the single-turnover reaction of dithionite-reduced N2OR shows that CuA is indeed oxidized in this N₂O reduction on the same time scale as Cu_Z oxidation. Thus the reaction of 1-hole Cu_Z -containing N_2OR with N_2O is a two-electron process in which 1-hole Cuz is oxidized to 2hole Cu_Z and reduced Cu_A is oxidized by one electron. N₂O reduction by 1-hole Cu_Z and reduced Cu_A occurs with a rate which is 6 orders of magnitude slower than the turnover number of 321 s⁻¹ determined for this enzyme.¹⁶ This strongly indicates that, while 1-hole Cu_Z (with Cu_A) does react with N_2O , it is not kinetically competent in catalysis under steady-state conditions.

To verify this, reduction with MV was used to select the redox states of Cu_Z and Cu_Z* present under steady-state assay conditions, 1-hole Cu_Z and fully reduced Cu_Z^* (Table 1). After removal of MV and addition of N2O, a complicated singleturnover reaction occurs, with contributions from a fast process and two slower processes (see Figure S5). These data are well simulated by adding a 35% contribution from the fast singleturnover reaction of fully reduced Cu_Z^* with N_2O to a 65% contribution from the slow reaction of 1-hole Cu_Z with N_2O observed with dithionite-reduced N2OR. Thus, the fast phase is due to rapid oxidation of fully reduced Cuz* and CuA upon N₂O reduction by Cu_Z*. A lower limit for the rate of this rapid oxidation is 200 s⁻¹ (see Figure S6), which is comparable to the k_{cat} of active N₂OR.¹⁶ The two slower processes observed are the decay of Cuz^o (an intermediate in the single-turnover reaction of fully reduced Cu_Z^* with $N_2O)^{17}$ to resting 1-hole Cu_z* and the slow reaction of 1-hole Cu_z with N₂O with formation of 2-hole Cu_Z.

Further support for this determination that fully reduced Cu_z* is the active form of the cluster under steady-state assay conditions was obtained by comparing the steady-state activities of Ma. hydrocarbonoclasticus N2OR obtained from the two preparation methods described above, the first using fresh cells with rapid chromatographic purification to maximize Cuz content and the second using standard aerobic purification conditions. The relative amounts of Cu_Z and Cu_Z* determined from EPR spin integration and the steady-state activities (assayed according to previously published procedures) for these enzyme samples are reported in Table 2. A clear correlation is observed between the steady-state activity of N_2OR and the amount of Cu_Z^* but not Cu_Z present. This is consistent with the observation that high steady-state activity for N₂OR is only observed after reductive activation by prolonged incubation with MV. Since 1-hole Cu_Z is not reduced by MV (Table 1 and Figure 2), the only new species formed during the reductive activation is fully reduced Cu_Z*, which is responsible for the high activity.

The single-turnover and steady-state reactivity results presented here demonstrate that, under steady-state assay conditions, fully reduced Cu_Z^* is the active form of the

Table 2. Cu_Z^* and Cu_Z Percentage, Specific Activity, and Normalized Specific Activity for 100% Cu_Z^* for Two N₂OR samples, the First Prepared via Rapid Chromatography and the Second via Standard Aerobic Purification^{*a*}

% Cu _z *	% Cu _z	specific activity (μ mol N ₂ O min ⁻¹ mg ⁻¹)	specific activity normalized to 100% Cu _Z *	
35 ± 5	65 ± 5	54 ± 3	154 ± 9	
96 ± 14	4 ± 14	141 ± 7	147 ± 7	
^{<i>a</i>} The percentages of Cu_Z^* and Cu_Z were determined by EPR.				

tetranuclear cluster in N₂OR. While 1-hole Cu_Z will reduce N₂O, only fully reduced Cu_Z* is kinetically competent to be involved in steady-state turnover. While the conditions used for steady-state assays of N₂OR are nonphysiological, the reaction of 1-hole Cu_Z with N₂O would be an essential step in any catalytic cycle involving Cu_Z. The slow rate of this process in single-turnover experiments indicates that 1-hole Cu_Z is likely not the active species *in vivo*. High reactivity for the tetranuclear copper cluster with N₂O thus reflects contributions from both the ability of Cu_Z* to access the fully reduced redox state and the presence of an open coordination site at the Cu_I-Cu_{IV} edge; neither is available for Cu_Z. The importance of this open edge is consistent with iodide inhibition of turnover, where crystallography shows that iodide bridges the Cu_I-Cu_{IV} edge in a similar fashion to the μ_2 S in Cu_Z.¹⁸

While it is not kinetically competent in turnover, the 1-hole redox state of Cu_Z does react with N_2O , a two-electron process which appears to involve one electron from 1-hole Cu_Z and one electron from the reduced Cu_A site. This is consistent with the crystal structure of N_2O bound to anaerobic N_2OR which shows an N_2O molecule localized between the Cu_Z and Cu_A sites.⁹

The reduction experiments described here show that the 4Cu2S Cu_Z site is not reduced past the 1-hole state under the reductant conditions used in turnover (Table 1). Thus, the Cu_Z site has two accessible redox states, the 2-hole resting state and the 1-hole reduced state. This differs from the redox properties of the Cu_{Z}^{*} site, where the 1-hole state is the resting form and the fully reduced state is accessible under the assay conditions in Table 1. These different redox properties likely relate to the additional μ_2 S ligand. This highly covalent sulfide donor ligand would stabilize the more oxidized redox state of $Cu_{Z'}$, while the solvent-derived edge ligand in Cu_{Z}^{*} is a poorer donor and would enable further Cu_z* reduction. A full analysis of the different redox properties of the Cu₇ site requires the determination of the protonation state of its μ_2 S ligand in the different redox states of the Cu_Z cluster, which is presently underway.

ASSOCIATED CONTENT

S Supporting Information

Experimental details, time course of the MV reduction, resonance Raman of N_2O reduction by 1-hole Cu_Z , kinetic fits for N_2O reduction, absorption showing no N_2O reaction with 2-hole Cu_Z , and modeling of the reaction of MV-reduced N_2OR and N_2O . This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors isabelmoura@fct.unl.pt

Present Address

[§]S.D.: Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by NIH grant DK-31450 (E.I.S.) and National funds by FCT (Fundação para a Ciência e a Tecnologia) under the projects PEst-C/EQB/LA0006/2013 and PTDC/QUI-BIQ/116481/2010 (I.M.).

REFERENCES

(1) Wust, A.; Schneider, L.; Pomowski, A.; Zumft, W. G.; Kroneck, P. M. H.; Einsle, O. *Biol. Chem.* **2012**, 393, 1067.

(2) Pauleta, S. R.; Dell'Acqua, S.; Moura, I. Coord. Chem. Rev. 2013, 257, 332.

(3) Gorelsky, S. I.; Ghosh, S.; Solomon, E. I. J. Am. Chem. Soc. 2006, 128, 278.

(4) Brown, K.; Tegoni, M.; Prudencio, M.; Pereira, A. S.; Besson, S.; Moura, J. J.; Moura, I.; Cambillau, C. *Nat. Struct. Biol.* **2000**, *7*, 191.

(5) Rasmussen, T.; Berks, B. C.; Sanders-Loehr, J.; Dooley, D. M.; Zumft, W. G.; Thomson, A. J. *Biochemistry* **2000**, *39*, 12753.

(6) Chen, P.; Cabrito, I.; Moura, J. J. G.; Moura, I.; Solomon, E. I. J. Am. Chem. Soc. 2002, 124, 10497.

(7) Ghosh, S.; Gorelsky, S. I.; Chen, P.; Cabrito, I.; Moura, J. J. G.; Moura, I.; Solomon, E. I. *J. Am. Chem. Soc.* **2003**, *125*, 15708.

(8) Chan, J. M.; Bollinger, J. A.; Grewell, C. L.; Dooley, D. M. J. Am. Chem. Soc. 2004, 126, 3030.

(9) Pomowski, A.; Zumft, W. G.; Kroneck, P. M. H.; Einsle, O. Nature 2011, 477, 234.

(10) Rasmussen, T.; Berks, B. C.; Butt, J. N.; Thomson, A. J. *Biochem. J.* **2002**, 364, 807.

(11) Fujita, K.; Chan, J. M.; Bollinger, J. A.; Alvarez, M. L.; Dooley, D. M. J. Inorg. Biochem. **2007**, 101, 1836.

(12) Prudencio, M.; Pereira, A. S.; Tavares, P.; Besson, S.; Cabrito, I.; Brown, K.; Samyn, B.; Devreese, B.; Van Beeumen, J.; Rusnak, F.; Fauque, G.; Moura, J. J. G.; Tegoni, M.; Cambillau, C.; Moura, I. *Biochemistry* **2000**, *39*, 3899.

(13) Coyle, C. L.; Zumft, W. G.; Kroneck, P. M. H.; Korner, H.; Jakob, W. Eur. J. Biochem. **1985**, 153, 459.

(14) Dell'Acqua, S.; Pauleta, S. R.; Moura, J. J. G.; Moura, I. Philos. Trans. R. Soc. B-Biol. Sci. **2012**, 367, 1204.

(15) Alvarez, M. L.; Ai, J. Y.; Zumft, W.; Sanders-Loehr, J.; Dooley, D. M. J. Am. Chem. Soc. 2001, 123, 576.

(16) Dell'Acqua, S.; Pauleta, S. R.; Monzani, E.; Pereira, A. S.; Casella, L.; Moura, J. J. G.; Moura, I. *Biochemistry* **2008**, *47*, 10852.

(17) Dell'Acqua, S.; Pauleta, S. R.; Paes de Sousa, P. M.; Monzani, E.; Casella, L.; Moura, J. J. G.; Moura, I. *J. Biol. Inorg. Chem.* **2010**, *15*, 967.

(18) Paraskevopoulos, K.; Antonyuk, S. V.; Sawers, R. G.; Eady, R. R.; Hasnain, S. S. *J. Mol. Biol.* **2006**, 362, 55.